Sequence Adaptive Peptide-Polysaccharide Nanostructures by Biocatalytic Self-Assembly.

نویسندگان

  • Yousef M Abul-Haija
  • Rein V Ulijn
چکیده

Coassembly of peptides and polysaccharides can give rise to the formation of nanostructures with tunable morphologies. We show that in situ enzymatic exchange of a dipeptide sequence in aromatic peptide amphiphiles/polysaccharide coassemblies enables dynamic formation and degradation of different nanostructures depending on the nature of the polysaccharide present. This is achieved in a one-pot system composed of Fmoc-cysteic acid (CA) and Fmoc-lysine (K) plus phenylalanine amide (F) in the presence of thermolysin that, through dynamic hydrolysis and amide formation, gives rise to a dynamic peptide library composed of the corresponding Fmoc-dipeptides (CAF and KF). When the cationic polysaccharide chitosan is added to this mixture, selective amplification of the CAF peptide is observed giving rise to formation of nanosheets through coassembly. By contrast, upon addition of anionic heparin, KF is formed that gives rise to a nanotube morphology. The dynamic adaptive potential was demonstrated by sequential morphology changes depending on the sequence of polysaccharide addition. This first demonstration of the ability to access different peptide sequences and nanostructures, depending on the presence of biopolymers, may pave the way to biomaterials that can adapt their structure and function and may be of relevance in the design of materials able to undergo dynamic morphogenesis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Two-dimensional honeycomb network through sequence-controlled self-assembly of oligopeptides

The sequence of a peptide programs its self-assembly and hence the expression of specific properties through non-covalent interactions. A large variety of peptide nanostructures has been designed employing different aspects of these non-covalent interactions, such as dispersive interactions, hydrogen bonding or ionic interactions. Here we demonstrate the sequence-controlled fabrication of molec...

متن کامل

Self-assembly of ultra-small micelles from amphiphilic lipopeptoids.

Poly(N-substituted glycine) "peptoids" constitute a promising class of peptide-mimetic materials. We introduce the self-assembly of lipopeptoids into spherical micelles ca. 5 nm in diameter as well as larger assemblies by varying the peptoid sequence design. Our results point to design rules for the self-assembly of peptoid nanostructures, enabling the creation of stable, ultra-small peptidomim...

متن کامل

Amino Acid Sequence in Constitutionally Isomeric Tetrapeptide Amphiphiles Dictates Architecture of One-Dimensional Nanostructures

The switching of two adjacent amino acids can lead to differences in how proteins fold thus affecting their function. This effect has not been extensively explored in synthetic peptides in the context of supramolecular self-assembly. Toward this end, we report here the use of isomeric peptide amphiphiles as molecular building blocks to create one-dimensional (1D) nanostructures. We show that fo...

متن کامل

Computationally designed peptides for self-assembly of nanostructured lattices

Folded peptides present complex exterior surfaces specified by their amino acid sequences, and the control of these surfaces offers high-precision routes to self-assembling materials. The complexity of peptide structure and the subtlety of noncovalent interactions make the design of predetermined nanostructures difficult. Computational methods can facilitate this design and are used here to det...

متن کامل

Switching of Self-Assembly in a Peptide Nanostructure with a Specific Enzyme.

Peptide self-assembly has been shown to be a useful tool for the preparation of bioactive nanostructures, and recent work has demonstrated their potential as therapies for regenerative medicine. In principle, one route to make these nanostructures more biomimetic would be to incorporate in their molecular design the capacity for biological sensing. We report here on the use of a reversible enzy...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biomacromolecules

دوره 16 11  شماره 

صفحات  -

تاریخ انتشار 2015